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The paper presents an original method employed to compute the normal and tangential stresses generated by shear forces 
and bending moments. The method uses an algorithmic approach together with concepts from elasticity, analitical 
geometry, numerical methods and computer programming. A boolean algebra was created which uses simple shapes as 
basic elements employed in upper level operations. It was conceived an algorithm which offers the most relevant values of 
the stresses, based on a set of points located on the simple shaped bodies which are subjected to complex filtering 
conditions at a later stage. The method was implemented in an 12000 computer code lines application. 
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1. Introduction 
 

Every age of science is synchronuous with the 
calculation mean currently employed in science. The 
results of the research activity provide the theory and the 
concepts which are the basics for upper level research or 
industrial applications. 
 

1.1 A historical perspective 
 

Two centuries ago mathematicians used to organize 
calculation contests in order to find the best formulae and 
methods which offer results in a minimum amount of time. 
It was the age when Nicolo Tartaglia invented the relations 
later known as Cardano’s formulae.  

The industrial revolution needed new theoretical 
methods to be used in the design of the new structures 
made of new materials (cast iron, steel) and which had to 
support new types of loads, beside the mechanical loads. It 
was the age when the French mechanicists had important 
contributions. 

The progresses in the nuclear and aerospace sciences 
required new means of calculation in order to perform 
very fast and accurate large amount of complex calculi 
with large amount of data. Computer science was asked to 
find the solutions and its  progresses were an engine which 
offered a boost for all the sciences. New sciences appeared 
and new strategies of reserach were conceived. 

In the actual conditions when the technical and 
scientific volume of information doubles every two years, 
computer became a common instrument in science.  
 

1.2 Aims of the study 
 

A legitimate question is why to use nowadays the 
applied elasticity theory when other methods, such as the 
finite element method is a common use and a useful 
method? 

Applied elasticity offers several mathematical 
solutions which can be used to compute stresses, strains or 
deflections. The computer code which simply uses the 
classic methods is limited because of the basic simplifying 
hypotheses of the classic approach and because of the 
mathematical solution which is focused on a narrow class 
of problems. 

Apart from these limitations, the strong point is that if 
the classic theory is employed together with other fields of 
science, applied elasticity may be used to create general 
analytic solutions which can be used either in dedicated 
models or in hybrid models. 

The knowledge of the basic mathematical layer 
includes methods belonging to the theory of elasticity, 
analytical geometry, numerical methods, computer 
programming. The theory of elasticity offers general 
solutions from the classical point of view which can be 
used as deductive methods in finding particular solutions. 
Analytical geometry offers methods to parameterize the 
domains where the solutions are searched. If a boolean 
algebra is defined and simple geometrical bodies are 
considered as basic elements employed in upper level 
operations, most of the geometrical values used in applied 
elasticity may be easily computed. General numerical 
methods are a common instrument nowadays and the 
accuracy of the results may be easily predicted and 
controlled. This is why the general numerical methods are 
used in all the types of models: analytic, experimental 
(experimental data automatic processing) and dedicated 
numerical methods, such as FEM and FDM. Computer 
programming is one of the most important components of 
the strategy, because it connects all the other topics and it 
is synchronous with the information technology progress. 

Coming back to the first sentence of the chapter, this 
strategy can be easily rejected by the people who base 
their judgments on their strong beliefs rather then 
exploring the new possibilities offered by the new 
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interdisciplinary methods. Let us consider some of the 
advantages of the classic approaches: 

• they are simple; 
• there are no problems regarding the numerical 

stability of the solutions; 
• accuracy is under control; 
• the computing methods can be easily generalized 

using algorithmic approaches; 
• if the original software application has a proper 

architecture, the libraries employed in applied elasticity 
models can be used in the upper level models, for 
dedicated industrial problems; 

• they are inexpensive; 
• they can be used to solve educational, design as well 

as research problems.  
Taking into account these features, the author has 

developed and implemented an original method to 
compute the stresses in the cross section of a beam.  
 

 
2. Theoretical background 

 
Stresses are computed in a given context, taking into 

account the loads as well as the shape of the cross section. 
Moreover, the most relevant stresses are in some points 
which may be located with respect to a given shape of the 
section. It results that the shape of the section is important 
and all the problems are related to it. This is why all the 
algorithmic solutions must take into account the shape of 
the cross-section. 

An initial idea was to consider a set of common use 
sections whose dimensions are parameterized, figure 1. 

As it can be noticed, the solution is not general and 
the user of a software application must choose a pre-
defined shape.  
 

 
 

Fig. 1. Parameterized cross-section. 
 

The most general approach is to allow the user to 
create his own cross-section. As it can be noticed in Fig. 2, 
a cross-section may be considered as a set of solid and 
hollow simple shapes. A sign is assigned to each simple 
shape: 1sgn −=  for hollow shapes and 1sgn +=  for 
solid shapes. 

 
 

Fig. 2. Two methods to decompose the cross-section. 
 

All the geometrical characteristics must take into 
account the sign which is initially assigned with respect to 
the state of the simple shape. The algorithm is: 

Stage 1 – the cross section is divided in simple shapes, 
solid ( 1sgn += ) or hollow ( 1sgn −= ).  

Stage 2 – it is computed the location of the elastic 
center 'E', and of the center of gravity 'G': 
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NB  is the total number of bodies with simple shape, 

hollow or solid, from which the section is created. The 

jρ  and jE  symbols designate the density, respectively 

the modulus of elasticity (Young’s modulus) of the j -th 
geometrical body. For homogeneous sections GE ≡ . 

Stage 3 - the calculus of the distances between the 
elastic centre of the cross section to the centers of gravity 
of each body having a simple shape, Ze , Ye : 
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Stage 4 – the calculus of the second moments of 

inertia or the second moments of area may be done with 
the formulae:   
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Stage 5 – calculus of the product moment of area 
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Stage 5 – calculus of the rigidity modulus for the 
tensile load, 



1228                                                                                    E. Oanta, A. Nita 
 

∑
=

⋅⋅=
NB

j
jjj AES

1
sgn                (5). 

 
Stage 6 – calculus of the rigidity moduli for the 

bending load 
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Stage 7 – calculus of the 'centrifugal' rigidity modulus 
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Once these values are known, the computation of the 

stresses is the next stage of the algorithm. 
In order to have an overview regarding the stresses in 

the cross-section, there must be used some formulae that 
take into consideration both stresses, normal and 
tangential. 

Thus, in the point located inside the cross-section, 
having the ( )jj zy ,  coordinates, the stresses may be 
computed using the expressions: 
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The first relation is a generalization of Navier's 

formula and the tangential stresses are computed by the 
use of Juravschi's formula. The values in the previous 
expressions are: 

N  - axial force; 

YT , ZT  - shear forces; 

YM , ZM  - bending moments; 

( )jj zy ,  - coordinates of the point belonging to the 

' j ' material; 

jE  - modulus of elasticity of the ' j ' material; 

( )jzYS , ( )jyZS  current first moment of area; 

( )jzYb , ( )jyZb  current width of the cross section 

One can notice that Navier’s formula can be used by 
replacing the coordinates of the point which must be 
located within the domain. Moreover, one can see that the 
normal stress has a linear law of variation.  

Juravski’s formula is more complex and it consists of 
a constant factor, the ratio between the shear force and the 
second moment of inertia and a variable one which is the 
ratio between the first moment of the area and the width of 
the section. The current first moments ( )jzYS  , ( )jyZS , 

and the current widths of the section ( )jzYb , ( )jyZb , 

depend on the location of the point within the section 
where the tangential stress must be computed. 
 

 
 

Fig. 3. Three possible cases for the computation of the 
first  moment  of  area   ( )zjYS    for   a  simple   shape 

(rectangle). 
 

These values may be computed similar to (1)-(7), by 
taking into account the solid and the hollow attributes of 
the simple shape. The relations are:  
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Fig. 3 presents three cases considered for the 

computation of first moment of area for a rectangle simple 
shape.  

The case presented on the leftmost side considers that 
the whole simple shape is taken into consideration for the 
computation of the first moment of area. If jh  and jb  are 

the sides of the ' j ' body, the area is jjj bhA ⋅=  and the 

distance from the center of gravity of the area to the Y  

axis is jGZ . The first moment of area for 
2

j
jG

h
ZZ −<  

is ( ) jGjjZY ZbhS ⋅⋅= . 
The case presented in the center of figure 3 considers 

that the current Z  coordinate crosses the rectangle. In this 
case, the sides of the rectangle which is taken into 
consideration for the calculus of the first moment of area 

are Z
h

Zh j
jG −+=

2
 and jbb = . The distance from the 

center of gravity to the Y  axis is  
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The case presented in the rightmost side of Fig. 3 
considers that the simple shape is not belonging to the 
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region where the first moment is computed. In this case, 

for 
2

j
jG

h
ZZ +> , the first moment of area is ( ) 0=ZYS . 

Similar formulae can be conceived for several bodies 
having a 'simple' shape. 

 
2.1 Location of the relevant stresses 

 
A computer approach allows the analyst to consider a 

large number of points where the stresses are computed in 
order to create an accurate diagram of the stresses.  

When a computer is used to solve such problems it is 
important to respect the basic rules of the classic 
discipline: to have relevant and accurate results using a 
small amount of time. Because time was important and it 
was not possible to use a computer at that time, there were 
used simplifying hypotheses and simple methods to 
calculate the stresses, strains or deflections. At present the 
computer methods solve the problem regarding the speed 
and accuracy, but it still must be respected the rule 
regarding the relevancy of the results. This means that the 
algorithm must be smart enough to decide what results 
have a special significance for the phenomenon which is 
investigated. 

In our applied elasticity problem, it can be noticed 
that the largest values of the stresses are either in the 
extreme positions with respect to the axes, or in the 
adjacent area of the center of gravity. Because the cross 
section is considered a set of bodies, hollow or solid, 
having simple shapes, the basic idea is to assign some 
points to the simple shapes, points where the stresses 
should be computed. 

It is important to conceive a set of general rules to 
identify these points in a cross-section having a complex 
shape. Also, the rules must be readily used in an algorithm 
and, further on, implemented in a program. In order to 
fulfill these requirements, the location of these points is 
considered on the basis of three principal  criteria: 

1. geometrical shape of the current body (see Fig. 4, 
relevant for rectangle shaped ‘simple’ bodies); 

2. values of the loads in the current section (see Fig. 
5); 

3. minimum distance between the points located on 
the boundary and the adjacent points 

4. elastic centre of the cross-section. 
 

 
 

Fig. 4. Location of the relevant points, taking into 
account the shape of the 'simple' body. 

 
 

Fig. 5. Location  of  the  relevant  points,  taking  into 
account the mechanical criteria (slope of the neutral 

axis). 
 

The first condition is relevant for the bodies which 
have ‘corners’ that can become the most distant points 
with respect to the elastic centre or to the neutral axis. The 
centre of gravity of this type of body is another relevant 
point because it may become the centre of gravity of the 
whole section in some certain cases like: for a 
homogeneous cross-section or for a single geometrical 
body or for a cross section with two axis of symmetry. 
Some other relevant points for circle-shaped sections may 
be found in the intersection point between the axis and the 
boundary of this body. 

The second criterion is relevant for circle-shaped 
bodies. As an example let us consider the case presented in 
Fig. 5. The two tangents are parallel with the neutral axis. 
The points designated with T1 and T2 are important for 
the diagram of the normal stresses. The slope of the 
neutral axis is necessary for the tangents as well as for the 
calculus of the slope of the perpendicular direction. This 
direction is important because it represents the slope of the 
‘zero-reference’ line of the diagram of the normal stresses.  
Moreover, the slope of the neutral axis is the direction of 
the lines of the hatch to be used for the diagram of the 
normal stresses. 

The third criterion is important because for each 
relevant point considered on the basis of the two previous 
criteria there must be considered some adjacent points in 
order to express the sudden variation of the tangential 
stress, if the width of the cross-section has a sudden 
variation. This is why there is defined a parameter named 
Eps . The adjacent points are located at Eps  distance away 
from the locations of the relevant points, with respect to 
the axis. The value of the Eps  parameter is very 
important. It must be large enough to be relevant, this 
means to generate distinct points and also it must not be 
considered to be null by the computer. On the other hand, 
the value must be small enough to assure a proper 
accuracy of the stresses, especially in design problems 
where the coordinates are multiplied with the parameter to 
be computed and which may have a large value. 

The fourth criterion is relevant for the cases when the 
elastic centre is not located in the internal region of the 
cross-section. As an example, this is the case of the cross-
section of a pipe. 
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3. Results 
 

Based on the previous interdisciplinary approach, was 
conceived a computer code consisting of more than 12000 
lines. The program is parameterized and it creates SCR 
files used in AutoCAD to automatically draw the cross 
sections, Fig. 6. 
 

 
 

Fig. 6. Different  sets  of  points  where  the  stresses  are 
computed with respect to the methods employed to divide 

the cross-section in simple shapes. 
 

The results were checked in detail and they were 
accurate. 

The data input is done by the use of a friendly user 
interface.  

The user is allowed to select the units and the 
materials, from a library and to modify some of the 
parameters. 
 

 
4. Discussion 

  
One of the most important problems was to create the 

list of points where the stresses must be computed. The 
algorithm consists of several stages: 

• all the points of the simple bodies are stored in a file 
which includes: coordinates, index of the body (shape, 
geometrical data, material); 

• points located outside the cross section are 
eliminated; 

• points must be distinct as coordinates, sgn  and as 
materials; 

• for heterogeneous cross-sections it must be decided 
the material employed for calculus of the normal stress 
(materials with both 1sgn +=  and 1sgn −=  are not 
considered); at the end of this stage all the points are 
distinct in terms of coordinates and each of them is 
assigned to an unique material; 

• if the elastic centre (gravity center) is not located 
into the internal area of the section (pipes, concave shapes, 
multiconnected sections (with holes)), this point is added 
because it is useful for the calculus of the tangential 
stresses. 

 There must be reminded that the user is allowed to set 
a parameter for each point in order to select the stresses to 
be computed. For the case previously presented regarding 

the elastic centre to be added to the final list, in this point 
may be computed only the tangential stresses. 

The generation of the final list of points is a method to 
filter the quantitative information related to the values of 
the stresses. 

This automatic filtering algorithm might include in the 
final list of points some points without a great degree of 
relevancy, but they are only a few.  

Taking into account that the cross section is a set of 
hollow or solid ‘simple’ geometrical bodies, the method to 
divide the cross-section is important because it can 
generate less so called 'relevant' points, case presented in 
Fig. 6. 
 

 
5. Conclusions 

 
Using the program to solve a large amount of 

problems, experience shows that the original method is 
very effective, being flexible and reliable. All the 
appropriate stages in the algorithm can be conceived using 
only common-sense conditions. 

Handling in an effective way the problem of the units 
there may be used parameters which allow the use of this 
method in design problems.  

The database which stores the geometry and the 
materials may be used in alternate studies which employ 
FEM or FDM, in this way the analyst being allowed to 
create hybrid models. 

This computer based solution can be easily 
generalised. 

Special cases when torsion is one of the loads require 
particular solutions. 
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